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Abstract 
 

This research presents a foaling detection system based on a deep learning-based image recognition algorithm for pregnant 

mares in precision agriculture. The system aims to predict water breaks and critical events before foaling and provide real-time 

monitoring to improve animal welfare. The experiment was conducted in a stable, using two camera devices capturing thermal 

images. The dataset of 5,618 infrared images was carefully selected to represent events before and after water breaks. The chosen 

deep learning model achieved an overall accuracy of 95.40% and an F1-score of 76.77%, indicating its effectiveness. However, 

challenges were identified, such as misidentifying urine and heat as water breaks. Rule-based corrections were introduced to 

address this, resulting in an improved F1-score of 79.02%. The foaling detection system's practical applications in precision 

agriculture include labor-saving benefits for ranchers and enhanced animal health during the foaling process. Furthermore, 

integration into existing farming practices could lead to timely interventions during horse births, improving overall farm 

productivity. © 2023 Friends Science Publishers 
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Introduction 
 

Precision agriculture is a transformative approach to modern 

agriculture that integrates advanced technologies such as 

information and communication technology (ICT), the 

Internet of Things (IoT) and artificial intelligence (AI) to 

optimize the health and productivity of livestock and crops 

(Abu et al. 2022). This innovative system aims to maximize 

returns on inputs while conserving resources, thereby 

increasing the sustainability and efficiency of agriculture. 

These technologies can monitor livestock health in real-time, 

and precision agriculture has opened new avenues of 

innovation in livestock management, particularly in the 

management of horse husbandry. An essential element of 

horse management, mainly, is the detection of foal estrus. 

The ability to accurately predict the onset of labor, especially 

when the fetlock ruptures or water breaks, significantly 

improves labor management in horses. Currently, traditional 

methods of delivery detection have several challenges and 

limitations, often require constant monitoring by experienced 

professionals, which is time-consuming and may delay or 

miss detection. It may include visual observation for 

behavioral changes, manual palpation for physical changes, 

or monitoring for changes in body temperature, all of which 

require considerable human intervention and expertise. In 

addition, improper labor management can have severe 

consequences for the health and survival of mares and foals, 

highlighting the need for more accurate and efficient 

detection methods. 

Research in precision agriculture and foaling detection 

systems has been extensive, with notable advancements in 

machine learning, sensor technology (Jung et al. 2021; Jung 

et al. 2022; Myrthe 2005) and image recognition techniques. 

However, each of these methods presents unique strengths 

and challenges. Foaling detection has dramatically benefited 

from technological advancements, particularly in sensor 

technology. Jung et al. (2021) developed an alarm system 

using sensors to detect specific motion patterns in mares 

during pre-foaling. Further, Jung et al. (2022) used an 

accelerometer to analyze and detect behaviors related to 

foaling. Temperature changes have also been observed as 

potential indicators of foaling. Müller et al. (2022) reported 

an increase in skin temperature within 90 min of birth. 

Similarly, using a wireless temperature monitoring device, 

Korosue et al. (2012) monitored body temperature changes 

before parturition. Auclair-Ronzaud et al. (2020) also 

explored the use of body temperature as an indicator of 

foaling in horses. Significant decreases in body temperature 
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were observed 12 h before and at birth, allowing early 

detection with a high degree of accuracy. Behavioral changes 

were also observed, suggesting that temperature monitoring 

may be a new tool to predict foaling in mares. Additionally, 

while the focus has been on foaling, machine learning and 

image recognition techniques have been used for calving 

detection in other animals. These techniques use patterns and 

trends in the collected data to predict future outcomes and 

events. Domino et al. (2022) and Bowers et al. (2009) 

investigated how infrared thermography (IRT) can be used to 

detect early and accurate pregnancy in equids, especially 

native and wild species. Image recognition has been used 

extensively in precision agriculture for crop and livestock 

management (Atalla et al. 2023), providing a basis for its 

application in foaling detection. 

Despite the advancements in precision agriculture and 

animal husbandry, there is a clear need for an improved, 

automated system that integrates multiple predictive 

parameters for foaling detection. This gap presents an 

opportunity for further research and development in this area. 

The main objective of this study is to develop and implement 

an automatic water break detection system for mares using 

deep learning algorithms and infrared cameras. The 

implementation of this system will enable more accurate 

prediction of calving and timely intervention to improve farm 

management. 

 

Materials and Methods 

 

Experimental setup 

 

The experiment was conducted in a stable located on a farm 

in the Niikappu-cho, Hokkaido, Japan. The exterior of the 

stable is shown in Fig. 1 and is approximately 4 m square and 

3 m high. In order to optimally monitor the mares, two 

camera devices were installed in the stables on a diagonal line, 

as shown in Fig. 2. The devices were developed for record-

keeping purposes for the experiments in this study. A total of 

six surveillance cameras were installed in the three stables. 

The video recording period was from April 18 to June 15, 

2022, during which 12 video data sets were collected and 11 

foal births were confirmed. During the filming period, 50,686 

images were acquired for analysis. 

Two types of cameras, a visible light camera, and an 

infrared camera, were attached to the device and used in the 

experiment. Fig. 3 shows the actual appearance of the 

developed device. As shown in the basic information for each 

camera in Table 1, the visible light camera is the Raspberry 

Pi Camera NoIR V2, a photography module for the 

Raspberry Pi, with a resolution of 1024 x 544 and an angle of 

view of 62.2°. The infrared camera was a Seek Thermal 

Compact PRO module developed by Seek Thermal, with a 

resolution of 240 x 320 and an angle of view of 32.0°. Two 

types of cameras were used in the experiment. 

The Raspberry Pi, a versatile and cost-effective 

computer, controlled the cameras and managed image 

capture. A dedicated recording and storage device was 

developed. Both cameras were time-synchronized, capturing 

images at around one frame per second. Captured images 

were sent to a CentOS7 server PC on the same network for 

storage. Python 3 and OpenCV were used for image 

processing, while EfficientNetV2 (Tan and Quoc 2021) was 

used for water break detection in infrared thermal images. 

Two thermal images were taken, one with water cutoff and 

one without, showing distinct heat signatures of the water 

break in Fig. 4. 

 

Data collection/acquisition: description of the dataset of 

foaling images 

 

The dataset used in the study consists of thermal images 

captured in an experimental environment to develop an 

automatic water break detection model. The dataset was 

carefully selected based on the presence or absence of water 

breaks, which typically occur 20–30 min before foal birth 

(Myrthe 2005; McCue et al. 2012). Continuous 24 h 

videography was conducted to ensure critical events like 

water breaking were captured. Training data was primarily 

extracted from the 30 min before water breaking, focusing on 

signs of impending delivery. This approach aims to increase 

the efficiency and accuracy of the water break detection 

model. The data set consists of 5,618 infrared images with a 

320 x 240 pixels resolution, corresponding to 12 delivery 

events. Of these images, 3,038 were taken after the water 

shutoff and 2,580 were taken when the water was not shut off. 

These images were carefully selected from the 50,686 images 

taken during the period of photography. The image capture 

rate was approximately one frame per second and all images 

were temporally synchronized with the video data. 

 

Image recognition and model training 

 

The specific image recognition algorithm utilized in this 

study is a convolutional neural network (CNN), is a deep 

learning model designed to process and classify visual data 

such as images. CNNs operate on the principle of hierarchical 

feature learning, which consists of several layers, including a 

convolutional layer, a pooling layer, and a fully connected 

layer The algorithm EfficientNetV2 employed in this study is 

a variant of CNN that excels in performance and parameter 

efficiency for computer vision tasks. EfficientNetV2 

employs an architectural search method to optimize its width, 

depth and resolution, and it is a conventional CNN and 

achieves higher efficiency with smaller model sizes than 

conventional CNNs. 

The input layer of the water break classification model 

was adjusted to accommodate the resolution of the images 

captured by the infrared camera, allowing it to handle images 

of (320, 240, 3) shapes. This model is then connected to the 

EfficientNetV2 and GlobalAveragePooling layers. The 

model layers and training parameters are summarized in 

Table 2. The water break detection model utilizes 
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EfficientNetV2 architecture and consists of an InputLayer 

for (320, 240, 3) infrared images, followed by 

EfficientNetV2-B0 layer producing (None, 7, 7, 1280) output. 

The GlobalAveragePooling2D layer reduces spatial 

dimensions (None, 1280). A dropout layer with 0.5 dropout 

rate prevents overfitting. A Dense layer with softmax 

activation classifies images into two classes: "with water 

break detection" and "without water break detection." The 

model is trained for 20 epochs with a batch size of 64, 

achieving an optimal trade-off between performance and 

training time. Categorical cross-entropy loss and Adam 

optimizer are used. The dataset is partitioned into training, 

validation, and test sets for unbiased evaluation. 

A leave-one-out cross-validation approach was used in 

this study. Of the 12 events in the dataset, 11 were used for 

Table 1: Camera description used in the experiment 

 
Camera type Device name Resolution Angle of view 

Visible light Raspberry Pi Camera NoIR V2 1024 x 544 62.2° 

Infrared Seek Thermal Compact PRO 240 x 320 32.0° 

 

Table 2: Overview of learning model for water breaking detection 

 

Layer Output shape Parameter No.  

Input Layer (None, 320, 240, 3) 0 

Efficient Net V2-B0 (None, 7, 7, 1280) 5919312 

GlobalAveragePooling2D (None, 1280) 0 
Dropout (0.5) (None, 1280) 0 

Dense (None, 2) 2562 

Activation (softmax) (None, 2) 0 

 

 
 

Fig. 1: Appearance of the farrowing stalls used in the experiment 

 

 
 

Fig. 2: Location of the two camera-equipped devices in the stables 

and the range of the thermal imaging camera 

 
 

Fig. 3: Device used in experiment: Raspberry Pi, visible light and 

infrared camera 

 

 
 

Fig. 4: Example of recorded infrared images: no water break (a), 

with water break (b) 
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training, and the remaining one was used as test data. The 

model was trained and tested 12 times, with a different event 

used as test data each time. The accuracy index of the test 

data in each pattern was evaluated to provide a 

comprehensive assessment of the model's performance in 

various scenarios. In addition, 10% of the training data 

(validation data) was used to evaluate the performance of the 

constructed model during training. This allowed us to fine-

tune the hyperparameters and evaluate their performance on 

each video data set. Finally, by carefully selecting the 

hyperparameters, performing cross-validation, and dividing 

the dataset into training, validation and test sets, an image 

recognition system for water break detection could be 

effectively trained and evaluated, ensuring reliability and 

practicality in real-world applications. The results of this 

study were used to ensure the reliability and practicality of 

the system in real-world applications. 

To evaluate the water break detection model, key 

classification metrics were used. The confidence score plays 

a crucial role in quantifying the model's certainty, with values 

above 50% indicating a water break and below 50% 

indicating its absence. True positives and true negatives 

represent correct predictions, while false positives and false 

negatives indicate erroneous predictions. High false 

predictions can impact model performance and practicality. 

To address this, a rule-based correction method was proposed, 

adjusting confidence levels and applying temporal correction. 

This correction reduces false predictions, enhancing the 

model's practicality and reliability for water break detection. 

Correction Step 1: The confidence score threshold for 

detecting water breakage is increased from 50 to 75% or 

lower. This is based on confidence intervals, where the model 

needs to be more confident in its predictions. The vertical axis 

in Fig. 5 represents the confidence value of the Deep learning 

model for water breakage detection and the horizontal axis 

shows the time series nature of the video frames. Correction 

1 reduces false positives by adjusting the confidence level to 

0 if it's below 75%. This results in a more accurate detection 

of water breakage after the 14th frame. 

Correction Step 2: Following Correction 1, if 6 or more 

frames out of the last 11 consecutive frames have a 

confidence level of 0%, the confidence level of the current 

frame is also set to 0. This helps improve accuracy by 

considering sequences of time-series frames for water break 

detection, reducing spontaneous false positives. As shown in 

Fig. 6, false detections prior to the actual water breaking 

period are eliminated with this correction. 

 

Results 

 

Table 3 shows parameter settings used in the experiment, 

and Table 4 shows the evaluation values for each calving 

event when no correction was made: the mean of the 

evaluation values for each of the 12 events was 95.40% for 

Accuracy, 78.06% for Precision, 86.44% for Recall and 

76.77% for F-score, indicating the overall effectiveness of the 

water break detection model. The evaluation of individual 

events revealed that some had low Precision (No.05, No.09 

and No.12) indicating erroneous water break predictions, 

while others had low Recall (No.06, No.08 and No.11) 

Table 3: Parameters when training the water breakage detection 

model 
 

Optimization algorithm Adam 

Loss function cross entropy 

Evaluation function Accuracy 

Batch size  64 
Number of epochs 20 

 

Table 4: Accuracy and Precision and Recall and F-score for each 
water break detection model with test data from 12 videos 
 

Number of video Accuracy (%) Precision (%) Recall (%) F-score (%) 

1 92.17 65.92 99.20 79.12 
2 99.93 98.53 98.53 98.53 
3 99.14 99.82 94.80 97.24 
4 98.77 98.56 84.71 91.11 
5 98.13 52.00 100.00 68.42 
6 97.34 76.62 62.77 69.01 

7 98.38 95.09 78.28 85.87 
8 96.88 98.24 63.50 77.14 
9 77.18 21.82 100.00 35.82 
10 99.69 100.00 95.48 97.69 
11 93.69 100.00 60.00 75.00 
12 93.47 30.07 100.00 46.24 
Average 95.40 78.06 86.44 76.77 

 

 
 

Fig. 5: Example of each image frame and its confidence score: 
without correction (when the threshold for water breakage 

determination is greater than 50%) 
 

 
 

Fig. 6: Example of each image frame and its confidence score: 

water break detection considering continuity by correction 1, and 2 
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suggesting oversights during water break detection. However, 

applying correction steps 1 and 2 improved Accuracy, 

Precision, and Recall in the water break detection model. The 

F-score, representing overall performance, improved by 2.25 

after correction. Figs. 7–9 illustrate examples of confidence 

scores at different times from the three water break detection 

models. Before correction, false detections occurred before 

the actual water break, but after the two-step correction, the 

model accurately detected the water break occurrence. This 

improvement in detection led to the enhanced Precision in 

Table 5. The corrected models provided practical and 

accurate predictions for real-world applications, making 

them useful tools for horse farmers. 

Discussion 

 

The study revealed some interesting patterns in the water 

shutoff predictions. In particular, there were marked 

differences in accuracy and recall among individual events; 

implementing a two-step correction process improved these 

measures, indicating that the model applies to all events. 

Interestingly, the correction, which improved precision and 

accuracy, inadvertently reduced recall slightly. This suggests 

a more complex relationship between these metrics than 

initially anticipated. 

Our method shows promising results compared to 

previous studies on pup detection systems, especially for 

 
 

Fig. 7: Example 1 of time variation of confidence scores for calving events (Video No. 5): (a) without correction (b)after correction 1 and 2  

 

 
 

Fig. 8: Example 2 of time variation of confidence scores for calving events (Video No. 7): (a) without correction (b) after correction 1 and 2 

 

 
 

Fig. 9: Example 3 of time variation of confidence scores for calving events (Video No. 12): (a) without correction (b)corrected 1 and 2 
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model accuracy. While several studies have shown 

comparable results, the unique strength of our model lies in 

implementing a correction method that significantly 

improves accuracy. The proposed image recognition 

algorithm is similar to existing methods in using deep 

learning. However, it differentiates itself by using corrections 

to deal with false positives, a novel and practical approach 

that helps improve overall performance. Despite the 

promising results, several limitations were identified during 

the study. One of the most significant limitations was that the 

model sometimes misidentified urine and heat as water 

breaks. This was revealed using class activation maps (CAM) 

(Zhou et al. 2016), a visualization technique highlighting the 

regions of the input image that contribute the most to the 

model's predictions. This technique revealed that on the right 

side of Fig. 10, specific patterns associated with feces and 

heat were misidentified as water breaking, creating false 

positives and affecting the model's reliability. These 

limitations sometimes reduced accuracy and recall and 

affected the study results. To mitigate these limitations, a 

correction method was employed. However, more 

sophisticated techniques must be developed to distinguish 

between urine, heat, and water breaks. For example, future 

studies could consider using multi-class classification models 

or specific feature detection algorithms. 

Our foal birth detection system significantly contributes 

to precision agriculture and animal monitoring by providing 

a reliable and automated method of predicting the critical 

event of horse birth. The originality of this research lies in 

developing and implementing correction methods that 

significantly improve model performance. 

 

Conclusion 

 

The study developed a foaling detection system using an 

EfficientNetV2-based image recognition algorithm to 

automatically detect water breaks in pregnant mares. The 

system achieved competitive performance with an overall 

F1-score of 76.77%. It showed high accuracy, precision and 

recall in most cases, but false positive predictions occurred in 

certain scenarios. Rule-based corrections improved precision, 

resulting in an enhanced F1-score of 79.02%. The system's 

adoption of EfficientNetV2 algorithm contributed to its 

efficiency and real-time capabilities, making it a valuable tool 

for precision agriculture. Integrating this technology can 

improve ranchers' monitoring and management of pregnant 

mares, leading to labor-saving benefits and enhanced animal 

welfare. In conclusion, our foaling detection system 

represents a significant advancement in precision agriculture 

and animal monitoring. It showcases the potential of 

EfficientNetV2-based image recognition algorithms in real-

time detection tasks. However, further research and 

refinement are essential to address the identified limitations 

related to misclassification. By continuously improving the 

system's accuracy and reliability, we can enhance its practical 

applicability and facilitate its adoption on farms to ensure the 

well-being of pregnant mares and their foals. 
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Table 5: Comparison of each accuracy score with and without 

correction 

 
Correction method Accuracy (%) Precision (%) Recall (%) F-score (%) 

No correction 95.40 78.06 86.44 76.77 

Correction 1 95.65 (+0.25) 80.88 (+2.82) 84.06 (-2.38) 77.33 (+0.56) 

Correction1 and 2 96.20 (+0.68) 87.48 (+9.42) 80.53 (-5.91) 79.02 (+2.25) 

 

 
 

Fig. 10: Visualization of reasons for water breakage using Class 

Activation Map (CAM):  
(a) Thermal image of correctly detected water break and (b) false water 
breakage detection due to heat in feces and urine (b) 
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